[image: image1.png]CEPS Projectes

Socials

CO-GAME:

Collaborative cultural heritage video game creation
IO - VIDEOGAME FOR VET PRODUCTION GUIDE
I0 LEADER:
[image: image39.jpg]- Erasmus+

[image: image38.png]LEARNING_HISTORY_THROUGH_VIDEO_GAMES

This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Table of contents
 1 Introduction
Game production: RPG and RPG Maker
 2 Getting started
The production process

Starting a new project

The interface
 3 Collecting game resources
Game consistency

RPG Maker resources
 4 Drawing maps
Create a new map

Drawing tools

Drawing a small village

Playtest

Drawing an indoors map

Connecting two maps
 5 Database editing
Characters and skills

Items and equipment

Enemies, battles and animations

Other database sections
 6 Programming events
Event screen

Using switches

Using variables

Creating a short cutscene
Introduction
In this guide we are going to take a detailed look into the production phase of the video game creation process. This part follows the design phase, from which we must receive all guidelines and details of the video game in order to produce it. At the end we must have a complete playable game ready to pass to the following phase, where it will be tested and evaluated.
Our task in the production phase is to turn the previously defined concepts and objectives into something tangible. That means it is in our hands to choose and combine resources and creative elements intelligently, according to the design document. In a large scale, we must first know, and at least be partially implicated, into the mission, goals and strategy of the project. This is what we first need to have in mind:
· Goals of the project: general purpose (educational, social, cultural, etc.), specific goals regarding the video game, knowledge it is intended to transmit, targeted audience, etc.
· Context where it will/may be played: what elements or processes will accompany the game (will it be part of a bigger project or is the game the focus of our mission?), what tangible resources are needed (hardware: video game platforms) and other contextual elements relevant for our project.
In a more specific range, and regarding the aims of the Co-Game project and the genre of video game we will be working on (RPG, graphical adventure, etc. even if it is mixed with other genres), we must also receive from the previous design process the following elements:
· Narrative elements: story, world, characters, etc.
· Graphic and audio elements: image style, music style, interface look, will there be videos?, etc.
· Game elements: game mechanics, level design, difficulty evolution, rewards, etc.
The third point of this list is the one we will be dedicating more time on this phase. A video game has aesthetic elements that are common with other forms of creation, such as literature or cinema, but it also has specific elements that makes itself unique. This means that as well as the narrative and the audiovisual elements have to be created accordingly to a specific creative plan, so are the game mechanics, which introduce crucial assets such as interactivity and learning processes. In other words, if we for instance have a narration that intends to transmit certain historiographical knowledge, and a graphic and musical styles that run accordingly to that goal, we should produce game mechanics that also work with the initial idea: for some projects a puzzle game might be more appropriate than an open world game, and viceversa.
In the production phase we don’t decide which is the game genre, not even what are the game mechanics, but we do have to implement them on the creation process and maybe redefine them up to a certain point. That’s why it’s important to know the meaning of the game mechanics, which are always a fun element that give the player access to any kind of knowledge we plan to transmit through a playful experience.
Game production: RPG and RPG Maker
There are today several game creation applications out on the net for non-programmers, each of which give us different possibilities and require different levels of computing knowledge. That means we don’t have to be computer scientists to implement a game creation dynamic on our project and have good looking video game accordingly to our purposes.
This guide is thought to describe with detail the creation of a game particularly linked to the mission of the Co-Game project. A certain kind of video game creation software was specifically chosen because of its possibilities not only in the creation process but also because of its results. The tool we need is a 2D RPG creator, and, specifically, the software we will be using throughout this guide is RPG Maker (version VX Ace).
RPG stands for Role Playable Game, one of the long-term classic video game genres with huge possibilities regarding a great variety of narrative elements, visuals, and game mechanics. There are lots of RPG sub-genres and variations, even combinations with other kinds of games, however, despite this diversification, there are some basic elements that define an RPG video game. How we implement, break or transform them depends entirely on us:
· There is a story and a setting. That means strong narrative components, including at least one main character.

· There is a world or scenarios to explore. The player can control the character and make it travel through them. Linking this with the story, we get quests or missions the player must solve assuming the role of the character.

· There are items and an inventory to save them. These items are linked to the mechanics of the game and the story- the player may use them in order to achieve something.

· There are actions and abilities. The character must have something that he or she does linked to the mechanics of the game.

· There is experience and leveling up. By advancing an RPG game, the character will gradually become better at his/her abilities. Gaining enough experience (out of finishing quests and carrying out particular actions), brings the character to become better at what he/she does, thus unlocking new possibilities on the game.
Whichever is the structure of our game, RPG Maker allows us to create all of these elements and more with no need of using code. In general terms, with this software we can: draw maps or scenarios, create and edit a database with all the game elements (characters, abilities, items, etc.), program events with its particular mechanics, import visual and audio resources and, optionally we can edit code scripts in order to personalize even more our game. The two main advantages are: it has a user-friendly GUI (Graphical User Interface) and the net is plenty of graphical and audio resources we can import, besides a huge amount of tutorials teaching a vast range of possibilities, from the general use of the software to the creation of particular game mechanics.
[image: image2]
RPG Maker VX Ace general interface
On this guide we will take a look at how to use RPG Maker to create our Co-Game video game. It is divided into these sections: collecting game resources (visuals and audio), map drawing, editing a sample scenario with basic events, database edition and events programming.
Getting started
The production process
Now that we have a game design to work with, we have to implement everything we know into a tangible video game. The production process consists on several phases, which, to carry them through, we will need to perform different activities within our game creation software. The following sections of this guide explain each of those, organized into the mentioned phases, which are:
· Collecting resources. We need to have a series of image and audio files. RPG Maker has enough of them to make a full video game, however, those are just a pre-selection that may not suit our needs. That’s why we most probably will need to look for new files on the Internet or even create our own.
· Drawing maps. Technically, in RPG Maker maps are what we also call scenarios, i.e. the physical places where most of the action and the story of the game takes places. In this case we are talking about a 2D graphical game interface, and that’s something we are going to take a close look to when learning map drawing.
· Editing objects. RPG Makes has a database we can edit, where most of the elements of the game are stored: characters, classes, items, enemies, animations, tilesets, etc. There are a lot of different elements we can create and then implement them on the game mechanics. Don’t worry if you don’t know what these elements are: we will take a close look at all of them in the proper section.
· Programming events. Once we have a place where the story occurs and the characters and other objects that will appear on it, it’s time to make something happen. We need to program everything that happens in the game, such as a short dialogue, or a way to control time. We will see how the events editor works, what tools we work with (switches and variables) and some examples of this. Important note: there is no need to code, since all this is done on an interface for non-programmers.
In order to perform all these actions, we need to know the tool we are going to use. Besides, not all of those will be done in that order. That means that even though we have to collect resources before drawing maps, we need to know how maps are drawn in order to look for the right images. And we will need to program some simple events before having all the elements of the database. So the aim of this section is to familiarize with RPG Maker before getting deeper on those phases. From now on, you can read this section having the program in front of you.
Starting a new project
As said before, the first step on the production phase is to collect all graphical and audio resources for the game. But that’s something we will see on the next section. Before that, we will take a look to RPG Maker to familiarize with the software and so we know where to manage the resources we are going to collect within the next section. So first of all we must open RPG Maker and start a new project. If we just want to explore and test the software we can always start a new project for testing and later on start a new one for our game.
Assuming we have RPG Maker installed, we have to open it and click on “File”, “New Project…”. On the new window we have to write the name of the folder where the project will be saved, the title of the game (we can change it later on) and the directory we want to save it. After that we will get to a new screen with the map editor, which we will take a look to later on this guide.
[image: image3]
New project dialogue box
The interface
Once we have created a new project, we have access to all the features of RPG Maker. This is our workspace and everything we are going to do to create the game, is going to be done here.
Map editor
The first thing we see, without clicking anywhere, is the map editor. Here is where we will draw, organize and save all our scenarios. As it can be seen in the image below, there’s an area where we can draw (a), the tiles we use to draw (b) and the area where all maps are saved and listed (c), where now there is only one map saved called “MAP001”. Note that the tiles are the basic inanimate elements that we “print” on the map such as: water, grass, floors, walls, trees. What we see on section (b) is what we call a tileset. There are several of them to use on RPG Maker, but we can import new ones (see the section about collecting resources further on) and edit them on the database (refer to the database editing section).
[image: image4]
Map editor interface
Database
The database is the place where we create and edit most of the elements that will appear on the game plus other useful tools we can arrange for ourselves: characters, items, battle elements, tilesets and other general options for the game such as vocabulary. To access the database, click on: “Tools”, “Database”. Later, on the specific section, we will take a close look to each of the sections of the database.
[image: image5]
Database interface
Resource manager
This is the place where we can import all the graphic and audio files we need for the game, each of which can be implemented and edited on different sections of RPG Maker. Later on this guide we will see how to import new files. Also, RPG Maker already comes with a handful of resources of each type and here is where we can visualize them. To access the resource manager, click on “Tools”, “Resource Manager”. To specifically test the audio files, go to “Tools”, “Sound Test”.
[image: image6]
Resource manager interface
Other essential and useful options
Character generator. There are also other sections we might want to look at. Regarding the files for “Characters” and “Faces” images (as called on the resource manager, but also commonly known on the net as “sprites” and “facesets” respectively), RPG Maker VX Ace comes with a simple editor where we can create those files. To access it, go to “Tools”, “Character Generator”.
Script editor. On RPG Maker there is also the possibility to edit code for further customization of the game we are creating. RPG Maker VX Ace uses Ruby programming language, whereas RPG Maker MV uses Javascript. If you know the code or think you are capable of importing pre-made codes found on the Internet, feel free to edit this section going to “Tools”, “Script Editor”. Otherwise, we recommend not to touch anything here to prevent ourselves from making an irreversible unwanted change.
Exporting a game. Finally, RPG Maker VX Ace gives us the option of exporting our game right into Steam Workshop (for further details on how it works, go to

 HYPERLINK "https://steamcommunity.com/workshop/"
https://steamcommunity.com/workshop/). We can do it by clicking on “File”, “Manage Projects”. We have also the option to freely export our game going to “File”, “Compress Game Data”. Note that the ways of exporting a game varies depending on the RPG Maker version we are using.
Collecting game resources
When starting to create our video game, the first thing we need is to make sure that we have the appropriate graphical and audio resources. Every RPG Maker version comes with a library of resources called, until version VX Ace, RTP (Run Time Package). With this resources we can produce an acceptable good-looking game, however, the styles of the graphics or music may not suit our game design. That’s why we need to either search or create new resource files and import them into the library using the resource manager. Note that being able to do that exponentially widens our possibilities.
Game consistency
Before importing new files we have to take into account one very important issue: game consistency. That’s how we call the aesthetic coherence of our game. In other words, we must avoid mixing images or music of different styles. Let’s see an example. If our game has childish look, all the elements that appear on the screen must look alike. We would never introduce on that game a character drawn in a futuristic style, wouldn’t we? This is the case of the image below. At least one character feels like shouldn’t be there. They even have different shadow shapes!
[image: image7]
RPG Maker resources
Now let’s take a look at what are the resources that we use on RPG Maker. The list is quite long and we might not use them all, but it’s worth knowing what can we work with. Later on, as we create the game, we will see where on RPG Maker each of the resources must be implemented (normally on the database or during events programming). First of all, let’s take a look at the resource manager so we can see all RTP resources. On the top menu, click on “Tools”, “Resource manager”. Everything on the left side are the folders where each type of resource is saved. We can click on any of them and see on the right side what files are saved on each folder and we can also preview the graphic resources by selecting one and clicking on “Preview…”. If we want to check the audio files, we have to go to “Tools”, “Sound Test”.
If we decide to create image files for the game by ourselves, we have to carefully take into account several rules (standards) for each type of graphical resource. All of them are 2D images and their size, content and distribution along the canvas is different in every case. Even if we decide to download ready-made materials, it is very helpful to have an idea of what those standards are, so we know what we are looking for. Many of the resources we can download from the Internet already meet their particular conditions- in case they don’t, we will see that the graphics just don’t fit on the game. On RPG Maker help (“Help”, “Contents”) there is a section where we can read about all resource standards, including information about file types. It is recommended to read that section, specially the part with the rules for tilesets pictures, which are the ones with the most tricky rules.
A good advantage of using RPG Maker is that there are lots of resources we can download for free on the Internet. The community is strong, wide and has been there for many years. So it will not be difficult for us to find resources or even tutorials on how to create them.
Let’s take a look now at the types of resources we find on the resource manager.
Animations
We can create animations on the database using these image files. Each one is composed of several smaller images which will work as frames. Any compatible image file we import here will appear on the “animations” section of the database so we can create them. Animations are to be shown either on battle screens or on cutscenes.
Battle backgrounds
In the resource manager called “battlebacks”, these are images work as a backgrounds for the battle system of a game, which is a game interface different than the maps. To make it easy to understand: if the player is fighting enemies in a forest, then the battle background should be the image of a forest. In RPG Maker VX Ace we can combine two pictures (battlebacks 1 and 2) and customize a bit more the battle background.
Battle graphics
The resource manager calls them “battlers”. These are the pictures of the enemies that appear during a battle. Note that these are different from a possible enemy we might want to make appear on the map. In that case we want to use a character image.
Characters
These are the images we use to create both our characters or NPC (Non-Playable Characters) and they appear on the map. These images are also called sprites, which is a very useful term we want to use if we want to look them up on the Internet. If we preview a character file, we will notice that they are distributed in a grid, each of its squares having the same character in a different position (normally facing up, down, left, right- with three positions each: right step, still, left step). This is how characters look when moving around a map.
Face graphics
These files contain faces for characters which we can make appear on dialogues and on the game menu the player uses to manage the main characters.
Parallaxes
Sometimes we may want to combine our maps with background images, such as skies. These are called parallaxes and are an optional but rather useful and probably beautiful way to enrich the graphics of our game.
Pictures
Just pictures with no size restrictions nor other requirements. In the resource manager we can import pictures that are not corresponding to any of the sections of the game edition. This works for showing pictures in the middle of the game and their usage is varied: narrating a flashback, showing a treasure map, etc.
System
Here we will find several images that are used for particular moments: icons, balloons, start battle effect, airship shadow, the “game over” image and window skins. Each of these has its particularities and it is recommended to take a look at the description on RPG Maker help to know their details and usage.
Tilesets
In the folder “tilesets” of the resource manager we can keep collections of tile images we use to create and customize tilesets on the database. These tilesets are used to draw maps. RPG Maker has very specific rules on how these pictures have to be distributed within the image file, how many of them we need to create a tileset, and how the software interprets them to implement them on the map editor. We strongly recommend to look at the description of RPG Maker help.
Titles
These are the pictures we use to create the main title of the game, which is the first interface the player sees when running our game and where the main menu is. As with battle backgrounds, titles can be made out of two combined images for a wider number of combinations.
Audio resources
There are four kinds of audio resources on RPG Maker. Remember that, as well as with graphics, we have to import them on the resource manager but we have to go to “Tools”, “Sound Test” to test them. As you can see on either of these windows, the types of audio are the following:
· BGM: background music. The music for our game, wherever we want it to be played: on the title screen, maps, battles, cutscenes, etc.
· BGS: background sound. Sounds that are played continuously such as rain, wind, a fireplace, etc.
· ME: music effects. Short musicals pieces that are played at certain moments like victories, finding a special object, losing the game, etc.
· SE: sound effects. Short sounds that are played for a certain circumstance, either in battle (we may use them when we create animations) or on the map. RPG Maker has lots of them, such as battle movements, animal sounds, bells, menu sounds, etc.
Movies
RPG Maker also lets us import video files. They work as the general pictures: there is no specific implementation on the RPG Maker database or events programming, but we can show them whenever we want during the game, for instance, at the start of a new game as an introduction.
Drawing maps
The physical places where our game takes place, either when playing or when watching a cutscene, are called maps on RPG Maker. We can also call them scenarios and they can be whatever we imagine: a town, a small room, a forest, a cave or even a world map. As seen before, the map editor is the first interface we see when opening the application. This is where we can create, organize, draw and customize our maps. In this section we will see how to create a new map and make some basic drawing.
Create a new map
First thing we have to do is go to the list of maps on the bottom left side of the screen, right click on the white background and click on “New Map”. This will create a new map on the list. But we can also create a new map hierarchically under a previously existing one, right clicking on it and click on “New Map”. Whichever is the case, we can always click and drag maps and relocate them on our list. Organizing maps this way is useful in moments such as when we have several maps that correspond to different rooms of the same building and we want to place them, on the map list, under a same group.
[image: image8] [image: image9]
Two ways of organizing “MAP001” and “MAP002”
Once we have clicked on “New Map”, the dialogue box “Map Properties” will appear with the options for the new map. Here is where we can name our map, define its size in tiles, choose a tileset to draw with, add music, add a parallax background, etc. There are also options for the battle system regarding the map we are creating. If we manage those options, we can define what random battles and where on the map will appear, but we will skip this part on this section and leave it for the moment we create enemies. Once we have selected the options we need and clicked OK, we will have a blank map. We have to take into account that even after creating the map, we can always come back to this screen and change options by right clicking on the name of the map in the bottom left list and clicking on “Map Properties”.
[image: image10]
Map properties dialogue box
Drawing tools
Once we have created a new map it’s time to draw on it. Before doing so, let’s have a look at the drawing tools. On the map editor (main RPG Maker screen) there is a tool bar on top.
[image: image11]
RPG Maker VX Ace toolbar
In the picture above each colour square is marking a set of tools.
· Red square. This is the “undo” button. It works as everywhere: if we make a mistake, we can undo it just clicking here.
· Green square. There are three different editing modes for the maps.

· The first button, “Map”, is the drawing mode. Click here to use the tiles to draw the map.

· The second button, “Event”, is the event editing mode. With this mode enabled we can no longer draw but instead, we can program events by clicking on a tile. We will see how this works in the events programming section.

· The third button, “Region”, is the region editing mode and it lets us set regions on the map by assigning an ID (a number between 1 and 63). This way we can program events that depend on the localization of the map. It is normally used to indicate which and where random battles will occur, but is has other uses since we can call a region ID when programming events.
· Blue square. These are the drawing tools per se. When activated the drawing mode we can change the shapes under which tiles will be drawn. This is very useful since sometimes we will need to fill large areas with one kind of tile, and sometimes just specific tiles. The last button is used to draw shadows. Normally shadows appear automatically but we can add or remove them with this tool.
· Orange square. These buttons comprise the zoom tool, very useful when editing large maps.
Besides from these, there is another very useful tool we can use: the eyedropper. There is no specific button for this, but it works by right clicking on an already drawn tile on the map. This way we are selecting that tile instead of having a hard time looking for it in the tileset on the left. Also, the eyedropper lets us select an area by right clicking and dragging. This is very useful if we want to copy something already drawn.
Drawing a small village
Now that we have created a new map and we are familiar with the tools we need, let’s draw our first map. First of all we have to edit the properties of our map. Click on the name of the map of the bottom left list and click on “Map Properties”. For now let’s name the map however we want and choose a size. If you plan to follow this section as a tutorial, we recommend to select 30 width and 18 height, approximately, and not to choose a parallax background for now. One important option is the tileset we want to use. RPG Maker has several of them available, but we can create more on the database. For now, choose the tileset “exterior” since we are going to draw an outdoors place. Also, have fun selecting a background music and sound (vary their volume and pitch for further customization). Click OK.
Now it’s time to draw. On the tileset there are several tabs: on A there are the bottom tiles. From B on, every tile there can be overlapped on any A tab tile. Tiles from A are divided into groups of tiles: ocean, floors, water, embellishing tiles (they overlap plants, rocks, etc. onto other tiles), autotiles (the ones that change depending on how we draw them, such as fences), walls, facades, etc. For more details on each kind of tile, look them up on RPG Maker help or just start experimenting!
The fist thing we have to draw is the floor, water and roads. On top of these we will draw the rest of elements. Fill in all the map with a floor tile and then add water on a small area. Then, draw a road that crosses the map from one side to the other. It should look something like this:
[image: image12]
After this it’s time to add buildings. If you take a close look to the tileset, tab A, you will see that there are tiles for roofs and for facades. Select a facade and draw a simple rectangle, and then another one for the roof on top. This is the simplest way to create buildings- of course, there are more complex ways. After that, fill more spaces with other elements that can be found on tab A, such as fences, stairs, secondary roads, etc., until having something similar to this:

[image: image13]
Now it’s time to explore tabs B and C. Remember that anything added from these will overlap whatever is drawn from tile A.
When drawing a map it’s important that we draw a balanced and varied map. That means we must try to avoid filling it too much or too little with elements and try not to make it too repetitive. Here are two examples of what you should not do, and an appropriate one. In the first one, the elements are too repetitive and it has a very low variety of them. The second one is very chaotic, there are elements blocking the passage and there is even a bridge that leads nowhere.

[image: image14] [image: image15]
[image: image16]
Playtest
Now that we have our first map, it’s time to have fun testing it. The last button of the toolbar is the playtest option (it can also be accessed clicking on “Game”, “Playtest”). With this, we can always test our game. First of all we have to make sure that our character (if we haven’t created any yet, RPG Maker assigns a character to our game by default) starts the game on the map we just created. Assigning a start location is the simplest of the events on RPG Maker and it goes like this: switch to the event editing mode, right click on the tile on the map we want the character to start the game and click on “Set as Starting Position”, “Player”. We can now test our map, which has no other event than the start location, so the only thing we can do for now is walk around and make sure the areas we have drawn are accessible and there is nothing blocking the way to get to the places we wish the player to go to.
Drawing an indoors map
Now we know the basics of drawing a basic map. However, there are a couple of drawing techniques we should be aware of when drawing indoor maps. Besides, we need a second map in order to start introducing some other simple events like the starting position. So what we should do now is create a new map (remember it can be located hierarchically under the first map) with a tileset for indoor places (the tileset “Interior” works for this) and a map size of approximately 20 tiles wide and 15 high.
When drawing, we now have to take into account that we will draw ceiling, walls and floor, as the basic three types of tiles onto which we will later draw other overlapping elements. Look at the tab A of the tileset: ceilings and walls work in the same way roofs and facades worked on the exterior map. Choose a ceiling tile and draw the perimeter of the map. Then choose a wall tile and draw the walls right under the ceiling tiles, from the top down (never on the sides or from the bottom up, since we are working on a 2D graphics video game). The rest of the blank tiles must be filled with floor. The result should look similar to this, where the ceiling is light brown, the wall is dark brown and the floor is gray:
[image: image17]
To draw the entrance to the building, we have to paint floor on top of the ceiling in the particular place we want the characters to go in and out of the building. Following the same logic, we can extend the ceiling tiles in order to create separations for rooms. See below how we added these tiles to create a separate wing. Note that every time there are new ceiling tiles drawn, we must draw walls under them, from the top down. Otherwise the graphics wouldn’t make much sense.
[image: image18]
Now it’s time to fill this map with extra elements. On tab A of the tileset there are more automatic tiles like tables (very useful if we want to put something on them with tiles from the tab B on). Our idea for this map is to create the inside of one of the buildings from the first map, so we are going to make a B&B. This is the result:
[image: image19]
Another kind of indoors map that is frequently used on RPG video games are dungeons. These are places where the player is challenged to overcome difficulties, according to the mechanics of our game. They can be caves, enchanted castles or whatever our imagination leads us to (maybe something less cliché). The mechanics of drawing dungeons are the same as any indoors map. Besides, RPG Maker VX Ace has an automatic dungeon creator that might be useful to us as a basis for our dungeon. To access it, create a new map, choose a dungeon tile set, make it big and after creating it, right click on it on the list of maps and click on “Generate Dungeon”. Then you must choose a set of ceiling and wall, and a floor tile.
Connecting two maps
Now that we have two maps, we should make the character be able to go in and out each of them. This is made by using one of the most common and basic events on RPG Maker: teleports. We can quickly create teleports from the event editing mode of the map, right clicking on the tile we want to create the transfer on, going to “Quick Event Creation” and then clicking on “Transfer” or “Door” (we will use the transfer on the indoor map and the door on the outdoor map), and finally selecting the destination on the dialogue box that will appear. Now we can test the game and try to go in and out of the building.
Database editing
The database is the section on RPG Maker where we can create a wide number of game elements. Once an element is created, we can implement it on a certain place of the video game. The database has a large amount of information we can create and edit, some of which is very specific in terms of what data we have to introduce. In this section we will explain all the parts of the database but we will not give very detailed information of certain aspects, such as equations and other formulas. That’s why we recommend you to take your time exploring all the options, taking into account the help messages RPG Maker provides whenever we place the mouse on top of an element of the interface, and to take a look at the help contents about the database (on “Help”, “Contents”).
Most of the sections of the database have lists of elements (characters, objects, status effects, etc.). These lists have already several entries by default. Whereas it is not recommended to use them, it is very useful to leave them untouched so we have references and examples for our own creations. Anytime we want to extend one list, we have to click on the button “Change Maximum” and introduce a higher number than the current- then we will have new blank entries for us to edit. This way we can add new elements on the database without having to erase others.
Characters and skills
The first two sections of the database are used to create the characters for our game, the ones we play with (not NPC!). The first one, “Actors”, is where we start creating a new character. We can introduce the name, a nickname, a description or short biography, a sprite, a face, etc. Also, there is the option of choosing a class. In RPG games, characters normally have a class (also called profession), which is a set of characteristics that define the abilities of the character: how strong, intelligent, fast, etc., the character is. In the database we can create our own classes on the tab “Classes”. Any character with a certain class assigned will have all its characteristics, although we can add particular abilities to a certain character in the section “Features” of the “Actors” tab.
On the “Classes” section we can edit several elements:
· Experience. As a character advances on the adventure, gains experience points. When they reach a certain amount, the character levels up, which means that his/her abilities will get better and may unlock other features like learning new skills. Here we can decide the amount of experienced needed to level up on each level, thus creating the experience curve.
· Abilities. On the area “Parameter Curves” we can edit which amount of ability points increase per level of the character. This way we create an ability curves that are correlative to the experience curve. The abilities are used normally in battles and are: health, magic, attack, defense, agility and luck. The way we use them, and the terms we use to rename them (on the “Terms” section of the database) will define which and how the abilities work on our game. Than means that even though “magic” is called like so, we can change the name of this ability and decide when and how it is used. The game, in the end, is just controlling numbers that interact with other numbers. This is what we edit on the “Skills” section of the database and on events.
· Skills. Here we can add what skills the character with this class learns and at what level. However, it is possible to teach a new skill to a character with events editing. If we want our character to learn the skill of recovering health points when reaching level 3, we will add that skill here. But if we want the character to learn this skill after completing a missing, regardless of his/her level, then we have to add the skill on an event that is activated after finishing a mission.
· Features. Here is a list in which we can add a wide number of elements that will characterize more particularly the class (or the character if we do the same on the “Actors” section). On classes, there are some features that appear by default, such as the ability to evade attacks and the kind of weapons the character can use. There is particular feature that we may want to use: elements resistance. When creating skills we can assign them an element (which we can edit on the “Terms” section). If we make a character resistant to an element, let’s say fire, all skills with element fire will be less effective on the character. We recommend that you explore all the options to have an idea of what you can do. Remember that when leaving the mouse cursor over an element RPG Maker gives us a brief explanation of it.
[image: image20]
Classes section on database
The third section of the database is used to create skills. As we have seen before, these can be taught to our characters, but so can be to enemies. Creating a skill has lots of options we can edit. Here we strongly recommend to have a close look to each of these with time and patience. Here it will be very useful to see how the already created skill have been done.
Generally, skills use a character’s abilities and other parameters to do a special action during battle or on the map. One of the parameters that is used here is TP (Technique Points), which are points that characters gain by using skills and then can be spent on special and stronger skills. The use of TP is completely optional and can be disabled on the “System” section of the database”. Some elements, such as skill types, weapon types, states and elements can be created and edited on “Terms” and “States” sections. Note that the possibility to use a certain skill type can be added or removed on the “Class” section, in “Features”. This means that we can limit the kind of skills can a character learn. Each skill can have an animation associated with, and they are created on the “Animations” section of the database.
[image: image21]
Skills section on database
Items and equipment
Another important element on RPGs are items. We can divide them into two big groups: general items and equipment. The general ones are used at certain moments during a game, they can be consumable or not, and they have varied uses. Equipment are normally non consumable objects that characters can wear, thus incrementing the values of their abilities as long as they are wearing them. Any item or piece of equipment can be left on the maps: inside chests, for instance, or in possession of a NPC or in a store.
If we create ways for the characters to earn money during the game, they can spend it on buying new and better items. This is an example of a way we can determine the difficulty curve of the game and the corresponding rewards: the more difficult is a mission or quest, the higher the reward. If the reward is money, the character can decide whether to buy, for example, ten small items or one big and powerful piece of equipment.
On RPG Maker we can create both kind of items in the database. The section “Items” is for the general ones, and “Weapons” and “Armor” sections are to create equipment. All items are easy to create and have a wide range of possibilities. We can create a items that help characters in combat, that teach them new skills, that unlock new possibilities or objects that just by having them change the course of the action in the game. In the case of equipment, we can also assign them a type (among the ones created on “Terms” section) and adjust the change of the abilities (parameters) in the character.
[image: image22]
Items section on the database
Enemies, battles and animations
The battle system
One optional but very common part of a game made with RPG Maker is the battle system. Besides maps and menus, the battle screen is another interface the player can find on a game. It is a classic 2D RPG battle system, even though it can change a little bit from one RPG Maker version to another. These battles can start two different ways: randomly walking on a map (we edit this on the “Map Properties” screen) or activated by an event.
On the battle screen we will have the option of making our characters fight by selecting options for each of them. The skills appear inside the menu “Fight”, whereas most abilities remain hidden in the battle screen since it’s a lot of information that we better manage outside of battles. The only three abilities that appear here are HP (Health Points), MP (Magic Points) and, if enabled, TP (Technique Points). The rest of abilities, along with the skills used, will decide the how many HP each character and enemy loses, and how many MP and TP they spend.
[image: image23]
Battle screen on RPG Maker VX Ace
Editing enemies on the database
In the database we create several elements that appear on battles. Some of them we have already edited, such as certain elements of classes and skills. The others are enemies, troops and animations (also, whatever we introduce in certain parts of the “Terms” section will vary the options available during a battle). Note that animations can also be used on a map for cutscenes.
In order to make a battle appear on our game we need to have a troop and, to create a troop, we need enemies to fill it with. So first of all we have to go to the “Enemies” section of the database and create one. Each enemy has a battler as graphic resource, and we can edit his/her/its abilities, skills and other parameters, very similarly as we did for characters. Also, here we decide how many experience points, money and items an enemy drops if defeated. In the case of items we can arrange the amount of probabilities an item is dropped, since we may not want the characters to gain an item every time they defeat a certain enemy that might appear frequently. Again, these are rewards achieved after a difficulty (this time, defeating an enemy). Finally, an enemy has also a pattern of actions. The characters are normally controlled by the player, but enemies are controlled by the AI, so we should tell them what to do, when to do it and with what frequency in the “Action Patterns” area.
After creating a least one enemy, we have to go to the “Troops” section of the database and create a new one. On a troop we can decide how many enemies we add and their position within the battle screen. If we want to make sure that a troop is not too easy or too difficult for the level we predict the characters will have at the point of the battle in the video game, we can test them here by clicking “Battle Test”. We can even program events to occur during a specific battle against a troop in the “Battle Event” area- so a fight can have a bit of narrative too, since we can program dialogues, change the course of the battle under certain conditions, etc. Any troop that we create can be added on the “Map Properties” screen to make it appear randomly as the characters walks around a map or a particular region of the map.
The other element that appear on battles are animations. We have to assign them to a skill and every time the skill is executed the animation will run. Also, by programming events, we can make an animation appear on a map. To create them, we have to go to the “Animations” section of the database and create one. Here we will need to select an animation graphic resource that, if well designed, will appear on the bottom of the screen separated by images. We can put these images in a timeline represented on the numeric list on the left of the testing area. That timeline is called “frame list” and each number represents a frame (on RPG Maker VX Ace a frame equals 1/60 seconds), on each frame we can put an image from below. Besides we can add more effects in the “SE and Flash Timing” area. We recommend to look at the help documents of RPG Maker or have a look at other animations to have an idea on how we should create one.
Other database sections
Tilesets
As explained during the map drawing tutorial, on the “Tilesets” section of the database we can create and edit our own tilesets. First we need to import the image files to create the tab A of the tileset. After that, the application will transform those images into the tileset we see on the map editor. Then we can edit each tile for more possibilities, such as whether the character can walk on it or not, and other interesting options we recommend you to have a look at. This way we can customize a lot our maps.
Common events
Normally events are placed in a map, like a door that is programmed to transfer the player from on map to another. However, we may need to call some events several times during the game, so in order not to repeat them all along, we can create the event once as a common event, and then just call it whenever needed without the need of programming the whole thing every time. This is useful, for instance, to create an event to control real time and then call this “time controller” common event on other map events, for example, an event that gives you a reward every five minutes.
System
This is where we customize several general options for our game, such as title screen, some of the music, sound effects, vehicle placing, etc. This is where we have to go, for example, to decide which characters or characters the player controls at the start of the game (in the area “Initial Party”).
Terms
Here we can edit the vocabulary of our game, the one that the player will read. Also, we can edit the lists of equipment and skill types, and elements.
Programming events
This is the most complicated yet the most interesting part of RPG Maker. Until now, we have drawn maps and created many game elements. However much we have made efforts to have lots of scenarios, labyrinths, enemies, etc., if we don’t create events most of the interesting parts of the video game are missing. We need events to have dialogues, NPCs walking around our maps, shops, puzzles, and an infinite range of other possibilities. In this section we will have a look at the event editing screen, learn about some basic elements we need to create events and we will implement this in the creation of a cutscene on the map we created on the map drawing section.
Event screen
As we said before, we can create events on the “Common Events” and “Troops” sections of the database or on the map. Let’s focus on map events, since most of them are created here and they have more details to look at. Once we have learnt to create them, then it will have no difficulty to create other events on the database. To create a new event on a map we have to be on the map editor, switch to the event editing mode and double click on a tile or right click on it and select “New Event”. Let’s say we want to create an event that shows us a text when our character is facing a sign drawn on the map. In this case, we will create the event on the tile with the sign.
[image: image24]
We created an event on a tile with a sign
Our goal is that every time the character is in front of the sign and the player touches the action button, a text will appear that says “Welcome to the Mayor’s House”. This is even simpler than a door, but useful to see the basic options of the event creator screen. Once we have opened it, we will see that on the left side there are some options:
· Conditions. We can make an event happen only if the game meets certain conditions that we can describe here.
· Graphic. An event can be placed on any tile and sometimes we need to make them visible, like the door. If there’s already drawn on the map that is useful or the event doesn’t need a specific space location, then we should not choose a graphic.
· Autonomous movement. This is very useful to create some NPCs (non-playable characters). If on “graphic” we choose a character and we give the event a certain movement pattern, then we will have created a NPC.
· Options. Further options we can choose regarding the movement of the event and its interaction with the character.
· Priority. This is the physical placement of the event in relation with the character, but this time its vertical situation, which is invisible until we try to go through it, since this is for a 2D video game. In other words, here is where we choose whether the characters can walk over the event (like a mark on the floor), under it (like a flying animal or object) or it just stands in front of the characters (like a door or a sign).
· Trigger. Here we choose how the event starts: by just “colliding” against it with a character, by pressing the action button, automatically, etc. It is very important that we pay attention to this because if we don’t choose the right trigger the event will not work as we expect.
On the right side we have the “Contents” area. This is where we actually program the event, adding lines. Every time we double click on the last blank line of the list (if we haven’t added any yet, that would be the first line), a dialogue box appears with lots of event commands to add to our event. If we want to show a text, then we will have to choose the first command on the screen: “Show Text”. Our recommendation here is to freely take a look at all these elements with the help of the RPG Maker documentation (on “Help”, “Contents”) or the brief messages that appear when leaving the mouse cursor over an element. Later on this section, we will see how some of the commands work.
[image: image25]
Commands dialogue box (1st tab)
So for our first event, we only have to edit the following options: give a name to the event on the top of the events screen, choose priority “same as characters”, choose as trigger the “action button”, choose the graphic of a sign only if we didn’t draw it on the map and add just one command: “show text” with the text “Welcome to the Mayor’s House”. At the end, the screen should look like this:
[image: image26]
And when playing, if we bring our character to the sign and touch the action button, this is what should happen:
[image: image27]
Using switches
If we want to create more complex events, we will need to use switches and variables. These are programming commands that keeps information about a value that can be used for something else. For example, we may want to create an event that only occurs if another event has occurred before. In this case we will use a switch, because switches keep an on/off information about a value (in this case, there would be a switch that keeps track on whether an event has happened or not). To know about the use of variables, see the next section.
Let’s now use a switch on the map we created before for a new event. Now we want to create a NPC in the town that says to the character “Do I know you?” but, after the character has read the sign, she says “Yes, I am the Mayor of this town”. To do this, we have to create a new event on the map, choose a graphic and set a show text command with the first sentence. Then, we have to create a new page within the same event by clicking “New Event Page” on top of the event screen. A fast way to do this is to copy the first page, paste it and then make the changes we have to make on the second page. There, we have to create the event for what happens when the character has read the sign. In this case, we have to do the same as in the first page but this time changing the “show text” command for the second sentence and then adding a condition. This is the key part: the condition must be a switch. Select one of the switch conditions, open the list, select the first blank switch, name it and click OK Now only the second page should have a condition. It should look like this:
[image: image28]
Now it’s time to tell the game when to turn on that switch, since all switches, by default, are off. If our idea is to make that NPC admit that she is the Mayor after our protagonist has read the sign, then we must turn on the switch in the event of the sign. So right click on it on the map, click on “Edit Event” and add a new command after the text. This time we need to select the command “Control Switches” in the “Game Progression” area on the first tab. Then select the switch we want to turn on, select “on” in “Operation” and click OK It will look like this:
[image: image29]
Now we are telling the game that if the character first talks to the Mayor, she will say: “Do I know you?”. Then when the character read the sign, the game will turn a switch on. Only after that, when talking to the Mayor, she will say: “Yes, I am the Mayor of this town”. Like this:
[image: image30] [image: image31] [image: image32]
Using variables
Another important element for programming are variables. Unlike switches, they do not keep an on/off information but they keep a numerical value. They work also as conditions for events and we can control their value on events by assigning them a number. Let’s say we want to create a situation in which the player has to light up some fireplaces and once having lit 3 or more, the character will receive a gift from an old man, which can be an item or money.
To do this, we first need to create a fireplace. It must be done on an event with two pages. On the first one, the graphic must be a fireplace with no fire, the trigger “action button” and a command that turns on a switch. In this case we recommend a “local switch”, that works like any other but only within the pages of the current event. After activating the switch, we must add 1 to the value of a new variable that we will call “Fireplaces”. This is done by selecting the command “Control Variables” and there choose and name a new variable, choose the operation “add” and the value a constant 1. As you can see, there are lots of possibilities to control variables by operating not only with constant numbers but also with other variables, random numbers and other numerical data of the game like the map ID or the number of items the player has of one same kind. Now, this page should look like this:
[image: image33]
The second page must have as a condition the switch we just turned on, and the graphic of a fireplace with fire (we recommend to select the option “Stepping Animation” if the graphic has the possibility to be animated).
The idea now should be to copy and paste this event around the map. Place as many as you want, but at least three. Then, create the NPC that will give you a reward after lighting up three or more fires. It has to be a NPC like the mayor, with a first page where we have to give the command of a text like: “Help me light three fires and I’ll give you a reward”. Then a second page with the condition that the variable we created when lighting up fires has the value of 3 or more, and as commands, a text that says: “Thank you very much for your help. Here you are 100 coins”, a command that gives the character such quantity of money (optionally, another that plays a sound effect that sound like a coin) and another one that turns on a local switch. Finally a third page with the condition that the local switch is on and a command with a text that says: “Thank you very much for your help”. And that’s all. This is how page two of this event should look like:
[image: image34]
The game mechanics can be implemented by using these elements in numerous ways. We recommend to look up on the Internet what other people of the RPG Maker community have done with variables and other commands. Just to have an idea, some of the simplest thing you could do include: a bank to save and take the money earned by the characters, receive a random amount of a certain item, register the answers to a set of questions made to the character and check how many are correct, etc.
With this mini game we just created, besides learning how to use variables we are also teaching something to the player. If this is programmed to be one of the first maps of our video game, telling the player that he/she will receive a reward after doing an activity that implies moving a character, we are teaching the player how to explore the scenarios, one of the first things the player must learn on a RPG video game. This could be a good first step for a difficulty curve, which could grow by drawing more complex maps, placing hidden clues that lead to other clues (instead of just a very visible fireplace), etc. Of course, the possibilities of the game mechanics are much wider.
Creating a short cutscene
Now that we are familiar with the creation of events, we could make a short cutscene where several characters interact by talking and moving on the map. Since we created, on this guide, a town and an inn, let’s make something happen inside the inn. Let’s imagine that our main character, whom we called Maria, wants to ask for someone that has information about a heritage site that has been abandoned for many years. She is a video game designer and wants to create a video game about this site to let everybody know about the History of that place.
Now that we have something to work with, let’s create the event. We think the cutscene should start when Maria enters the inn for the first time. After that, everything will happen automatically, i.e. the player can only watch what happens until the cutscene finishes. To program this we will need an event with an “Autorun” trigger and a local switch that makes it run only once (this works opening a new blank page on the event with the condition of that switch turned on). Since the event trigger is set to “Autorun”, the player cannot move until it has finished processing. If we wanted to create an event that occurs while the player is moving the character, then we should select the trigger “Parallel Process”. But that would not be the case for a cutscene. Since this kind of event does not require a graphic and it’s invisible to the player, it is recommendable to place it somewhere easy to find. Look where on the map we placed it:
[image: image35]
To create this event we will need basic commands like “Show Text”. But since we want to make Maria and NPCs move on their own, we will need the command “Set Move Route” every time one character has to move. Also, we can count on other commands like showing animations, showing balloon icons or showing pictures. And a very useful indicator to let the player know that is a cutscene, is changing the music, which we can fade in and out with the command On this event, a very important command to use is “Wait”. We must use it in between the moments of the scene to avoid making it go too fast. This command lets us define a waiting time in frames. Remember that one frame equals 1/60 seconds. Here is how can you edit this event. Both pictures are the same page of the event:
[image: image36]
[image: image37]
When creating an event like this, it is required to test it many times. Don’t be afraid of doing it as many times as you need. After all, we need to check the results of all our events, correct the mistakes and learn by doing so.
